
slides: kyle.fedorapeople.org/devconf-2015-02-07.pdf

Kyle McMartin
Presented by

kyle@{redhat.com,fedoraproject.org}

tales from the trenches

about me?
Fedora / Red Hat for 8 years

Ubuntu before that

Debian before even that

about me?
contributor to many linux ports

especially hppa & ia64

and now arm64

mostly generalist

working on kernel/toolchain bugs

what am i speaking about?
looked back at year in review

almost all bugs fixed had 1-liner patches

how did all of these come about?

debugging strategies

and coping mechanisms

what am i speaking about?
generally peter robinson or paul whalen
ask me to take a look at something

usually either a FTBFS, or software crashing.

6 main bugs today
All in the kernel or gcc/glibc

Resulted in a mix:

runtime failures

kernel panic

program crash

6 main bugs today
will attempt to use these bugs to
illustrate technical details

1: python failing
dmarlin reported anaconda failing when
dlopen-ing in python

started fine, but eventually fell over

message about exhaustion of TLS slots

what is TLS?
thread local storage

mechanism for private data access on a
per-thread basis

sort of like per-cpu in the kernel for
threads

static versus dynamic
dynamic TLS is most flexible model

results in a function call into libc

which looks up the address in the per-thread
TLS area and returns it

static TLS is set aside at startup time

“best guess” for how much is needed based
on static links

static versus dynamic
obviously can't know how many objects
will be dlopen'd

leave some space, hope for the best

TLSDESC
invented by alex oliva

optimisation for dynamic tls

optional on most architectures (x86_64,
arm...)

greedily uses space set aside for static
TLS as a further optimisation

TLSDESC
Except if all static TLS space is consumed
by TLSDESC use, can't dlopen anymore.

Trivial workaround to always fallback to
dynamic TLS

This got python/anaconda going again

Better Fix
Set a flag when loading via dlopen and
fall back to dynamic TLS

Same code path used by both ld.so and
dlopen loading, so need to distinguish,
otherwise makes static link case worse.

2: kernel panic
reproducible kernel crash caused by
unprivileged user

AWESOME (not!)

dd if=/dev/zero ibs=1 count=1
KERNEL PANIC, SPLAT!

CVE-2014-7843
fortunately arm64 hardware not terribly
common last year

debugging this from the kernel dump...

kernel panic (reduced)
Unable to handle kernel paging request at virtual address 1cc90000
pgd = fffffe03d8410000
*pgd=00000043d0410003, *pud=00000043d0410003, *pmd=00000043d0410003, *pte=0000000000000000
[...]
CPU: 3 PID: 2866 Comm: dd Tainted: G E 3.17.0-0.49.sa2.jkkm4.aarch64 #1
task: fffffe03d76f5a00 ti: fffffe03de078000 task.ti: fffffe03de078000
PC is at __clear_user+0x40/0x50
LR is at read_zero+0x60/0xc4
pstate: 60000145
sp : fffffe03de07bdf0
x29: fffffe03de07bdf0 x28: fffffe03de078000
x27: fffffe0000bda000 x26: 000000000000003f
x25: 0000000000000118 x24: 0000000000010000
x23: fffffe03de078000 x22: 0000000000000000
x21: 000000001cc90000 x20: 0000000000000001
x19: 0000000000000001 x18: 000003ffc75195e0
x17: 0000000000420208 x16: fffffe00001dac08
x15: 003b9aca00000000 x14: 002422cd6e000000
x13: ffffffffabac2edb x12: 0000000000000018
x11: 000000001165666b x10: 00000000ffffffff
x9 : 0000000000bf5a48 x8 : 000000000000003f
x7 : fffffe0000c90000 x6 : cb88537fdc8cb300
x5 : 0000000000000000 x4 : fffffe0000406d98
x3 : 0000000000000001 x2 : 0000000000000001
x1 : 0000000000000000 x0 : 000000001cc90000
[...]
Call trace:
__clear_user+0x40/0x50
vfs_read+0x84/0x198
SyS_read+0x4c/0xb0
Code: 7800241f d1000821 b1000421 54000044 (3900001f)

what does this tell us?
address is 0x1cc90000

64K page aligned

user address (how do we know?)
kernel is in upper-half of 64-bit address space

hence all the 0xFFFFFE... addresses

what does this tell us?
PC is at __clear_user

zero-ing a user string

Architecture-specific function (suspicious
automatically since we've not seen this bug
elsewhere...)

LR is at read_zero

makes sense, we're using /dev/zero after all

what does this tell us?
Code: 7800241f d1000821 b1000421 54000044 (3900001f)

0x3900001F is the failing instruction

Decode using as/objdump

0: 3900001f strb wzr, [x0]

store byte to [x0]

x0 is faulting address

user access and fixups
optimisation of user access

assume it will work, and handle it if the
user pointer is invalid

kernel will take a fault, fix it up, and
continue executing

user access and fixups
however, we must annotate these, so the
kernel knows how to handle them for a
given instruction

USER(9f, str xzr, [x0], #8)

creates a fixup in the kernel for the specific
instruction

on failure, branch to label 9 address

user access and fixups
this USER() annotation was missing on
the single byte strb case

resulted in the kernel being unable to handle
single byte dd

9 byte would be fine, because the first 8-byte
access correctly fixed it up

3: glibc crash
while generating locale data during build

older builds had been fine, but latest
snapshot failed

first step: what changed?

git diff -p –stat $snapn-1 $snapn

3: glibc crash
immediately see a .S file added in
aarch64 support

ok, that's definitely suspicious.

3: glibc crash
let's revert that commit and see...

and the build passes, and testsuite shows no
regressions...

ok, that's weird, this looks pretty sane

ask around, apparently well tested
assembly code

Working backwards
We have a crash, but everything looks
fairly sane there

Why are we crashing?

Work backwards, get reproducible

Comparison debugging
Hack glibc to call both assembler and
generic C version based on env. variable

Run both in gdb, compare state at point
of crash

Eliminate possible skew, compare return
from strchrnul

Something funky
Compare state on entry and exit of both
functions

Weird, v15 varied in assembler version
(not entirely unexpected, since it's used)

However, not save/restored by caller!

Time to look up the ABI

ABI
Tells us the calling conventions for
functions

Allows compiler writers & toolchain
people to write code that can call each
other

Details where arguments are in registers,
how the stack is laid out

ABI
Also optimisations...

If certain registers aren't used, they can be
ignored

Avoids saving/restoring all GPRs/FPRs
unnecessarily on every function call

callee-saves versus caller-saves

ABI
On Aarch64, %v15 is callee-saved

But used as if caller-saved by strchrnul.S

One-line patch to pick a different register
which is, and suddenly things work again

4: gcc code gen bug
libcap-ng failed to set process caps

errored in its test suite

uses TLS to store thread caps

tickled by “fix” for python above

not immediately obvious how it's possible

Back to dynamic TLS
Results in a function call

Previously would have used static TLS
which was fixed up at load-time

Try to figure out how we fell over

Narrow the problem
Re-build qemu without optimisation

This works properly

Now, start optimising individual objects
until it fails again

Narrow the problem
Now, the real fun, grind away the
optimisation passes in gcc until we figure
out which fails

Compare assembly output between pass
and fail

Narrow the problem
OK, wow, that's a pretty big diff...

But, we know where it fails, so only look
at those pieces of assembly where things
changed

Movement of a comparison across the
TLS assembly sequence

Weirdness in GCC
Moving a comparison across a function
call is risky

Why? Functions can have side effects the
compiler doesn't know about

Bug in GCC's aarch64 support

Weirdness in GCC
rth spots the problem, the TLSDESC
sequence in gcc wasn't clobbering the
condition register

Anything code which moved a
comparison around a TLS variable could
be broken

Mass rebuild needed with fixed gcc

Mass rebuilds suck
Most of the time... new FTBFS can creep
in since we're building in a different order
than what was tested

Can we avoid doing one?

YES!

glibc hack
Workaround by saving/restoring the
condition code to the stack in the
assembly wrapper

Four line hack avoids rebuilding world

 glibc-aarch64-workaround-nzcv-clobber-in-tlsdesc.patch

5: keyctl testsuite failure
jbastian reported PAGE_SIZE-1 keyctl
commands were failing

obviously that's immediately suspicious

reminded me of a bug from last year
strnlen_user had an off-by-one

strnlen(3)
size_t strnlen(const char *s, size_t
maxlen);

number of bytes in s
less the terminating NUL

but at most maxlen

looks only at maxlen bytes worth

return strlen(s) < maxlen ? strlen(s) :
maxlen;

strnlen_user
kernel semantics differ from userspace

returns size of string INCLUDING NUL

if strlen(s) > maxlen, returns maxlen+1

returns 1 if s[0] = NUL

returns 0 if s is a bad user pointer or maxlen
is invalid (ie: negative or whatnot)

strnlen_user
needed to handle max+1 condition

previously truncated to max-1

new bug had was similar, but had the
issue where n == max, not max >= n

handle that case, suddenly PAGE_SIZE
sized strings work as expected

strnlen_user
illustrates the danger of similarly (or
same) named APIs

when semantics differ in subtle ways

when they're not exercised properly

importance of writing test-cases for
kernel code if it can be lifted to userspace

exercise syscalls before merge

ditto any optimised functions

6: qemu failure
richard jones reporting qemu failing in
rawhide on a TLS variable (noticing a
theme?)

failed when built -pie -O2

succeeded when build -O0

6: qemu failure
Narrowing down build flags used

-pie wasn't the problem

neither was optimisation

On a hunch, forced local exec model for
TLS

that worked too, ok, weird

6: qemu failure
Local Exec TLS model forces static TLS

Means no extra GOT entries allocated
(since not dynamic)

Reloc processing fixes up directly to point into
TLS space

All about GOT
Global Object Table

Fundamentally, a list of addresses so that PIC
code can find data without needing to modify
program code

Needed to be able to share program code
between processes

Otherwise we break CoW

All about GOT
Dynamic TLS uses extra GOT entries

Housekeeping stuff that's irrelevant to
discussion

Binutils was misaccounting for the size on
AArch64

Back to qemu
Debugging qemu in gdb, the data at the
addresses it was accessing looked totally
bogus

How's this possible? Test different flags,
starting with combreloc which reorders
the reloc table.

This fixed the bug, suspiciously

binutils the culprit
combreloc was reordering with an
incorrect size as a result of a bug in
aarch64 support in binutils

backport one line fix from upstream and
things are working again with relro and PIE

Questions?
feedback to http://devconf.cz/f/100

kyle@redhat.com
Contact:

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

